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Abstract
Effects of dipole–dipole interactions on the magnetic relaxation have been
investigated for three Fe–C nanoparticle samples with volume concentrations
of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective
behaviour due to dipolar interactions, only the 17 vol% sample displays critical
behaviour close to its transition temperature. The behaviour of the 5 vol%
sample can be attributed to a mixture of collective and single-particle dynamics.

1. Introduction

The dynamics of systems of interacting ferromagnetic nanoparticles has been the focus of
extensive research in recent years. A question of considerable controversy has been the
existence of a phase transition to a low-temperature spin-glass-like phase [1–9]. Recent studies
on strongly interacting systems have reported a critical slowing down [4, 5, 9] and a critical
divergence of the non-linear susceptibility [6]. In addition, non-equilibrium properties such as
ageing, memory and rejuvenation phenomena have been observed in magnetic relaxation and
low-frequency AC susceptibility measurements at low temperatures [7,10]. These observations
indicate the existence of a low-temperature spin-glass-like state. However, some questions
about the collective state of interacting nanoparticles are still not resolved. In a recent
experimental study of an interacting maghemite nanoparticle system [11], it was not possible
to find evidence of a finite-temperature transition to a spin-glass-like phase. Still, the particle
system exhibited non-equilibrium dynamics in magnetic relaxation experiments, typical of spin
glasses. The absence of a critical behaviour was in this study linked to mixing of collective
and single-particle relaxation effects. Mixing of this kind can for instance originate from a
broad particle size distribution, or it may be observed in a system with a small volume fraction
of particles and therefore comparably weak inter-particle interactions.

In this work, extensive studies of the magnetic dynamics in a close-to-monodisperse
nanoparticle system are presented. Three samples having different volume concentrations of
nanoparticles were investigated: one dilute and nominally non-interacting sample and two
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more concentrated interacting samples. Both interacting samples exhibit collective behaviour
due to dipolar interactions at low temperatures, but only the most interacting sample displays
critical dynamics in the time window investigated and shows equilibrium dynamics quite
similar to that of an atomic spin glass.

2. Experimental details

The particles were prepared by thermal decomposition of Fe(CO)5 (20.0 ml) in a mixture
of carrier liquid (50.0 ml cis–trans-decalin) and surfactant (4.0 g oleic acid) by the method
described in [12]. This method leads to the formation of surfactant-coated particles of the
amorphous alloy FexC1−x (x ≈ 0.2–0.3). The decomposition was carried out slowly by using
low heating powers. Great care was taken at all times to avoid oxidation of the particles
and a flow of Ar/H2 (98/2%) gas through the reaction vessel was maintained throughout the
preparation. After preparation, the decalin carrier liquid was evaporated at 140 ◦C under
reduced pressure using a gas flow to drive out the vapour and a small amount of de-gassed
xylene was added such that the volume fraction of particles in the resulting base ferrofluid
was about 5 vol%. More dilute samples were obtained by further dilution of this ferrofluid by
addition of xylene and more concentrated samples were obtained by evaporating the xylene at
room temperature in vacuum. All sample handling after the preparation of the base ferrofluid
was carried out in an argon glove box. The chemical state of the iron in the ferrofluids was
checked by Mössbauer spectroscopy, which showed that no significant oxidation of the particles
had taken place during the sample preparation and sample handling. The particle volume
fractions in the resulting samples were estimated from the iron content determined by atomic
absorption spectroscopy. The sizes of the particles were determined from transmission electron
microscopy (TEM) studies. A droplet of a dilute ferrofluid was placed onto a grid that was left
in air for about a week to ensure full oxidation of the particles. The size determination from the
resulting TEM micrographs was subsequently corrected for the change in density due to the
oxidation of the particles. The shape of the particles was spherical to a good approximation.
The particle size distribution was obtained using the computer analysis method described
in [13]. The analysis of 1579 particles yielded the average particle diameter d = 5.3 nm with
the standard deviation 0.3 nm. The volume-weighted volume distribution was well described by
the log-normal distribution, f (V ) dV = (2π)−1/2(σV )−1 exp[− ln2(V/Vm)/2σ 2] dV , with
Vm = 78.2 nm3 and σ = 0.13. The present preparation batch is slightly different from that
studied previously in [4, 6, 14]. We have studied three samples with particle volume fractions
φ of 17 ± 4, 5 ± 1 and 0.06 ± 0.02 vol%. In the most concentrated sample, most of the
carrier liquid was evaporated and the sample had a paste-like consistency. This resulted in
poor thermal contact between the sample and the sample container. Thermal stability was not
achieved until several minutes after a change in temperature, preventing systematic studies of
the non-equilibrium dynamics for this sample.

Two experimental set-ups were used for the magnetic studies. A commercial
susceptometer (LakeShore model 7225) was used for DC field scans and AC susceptibility
measurements in a frequency range of 15–1000 Hz. A non-commercial superconducting
quantum interference device (SQUID) magnetometer [15] was used for AC susceptibility
measurements in a frequency range of 10 mHz–9.1 kHz, zero-field-cooled (ZFC) relaxation
measurements and magnetic noise measurements. The applied AC and DC fields were chosen
small enough (0.1 Oe) to ensure linear response from the samples. The background field was
<1 mOe. The ZFC relaxation measurements were carried out by cooling the sample to the
measuring temperature T in zero field, equilibrating the system for a wait time tw and then
applying a small DC field h and measuring the magnetization M(T, t) as a function of time, t ,
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Figure 1. AC susceptibilities for the 0.06 vol% (�), 5 vol% (◦) and 17 vol% (�) samples at
frequencies of f = 125 Hz (filled symbols) and f = 1000 Hz (open symbols).

after that the field was applied. For a slowly relaxing system, it can be shown that M(T, t) and
the relaxation rate S(T , t) ≡ h−1∂M(T , t)/∂ ln t relate to the real and imaginary components
of the AC susceptibility as [16]

M(T, t)/h ≈ χ ′(T , ω), (1)

S(T , t) ≈ 2

π
χ ′′(T , ω), (2)

with t = 1/ω. Magnetic noise measurements were performed in zero external field using an
HP35670A dynamic signal analyser. The power spectrum of the magnetic fluctuations was
measured in three overlapping frequency intervals (i) 0.003–12.5 Hz, (ii) 0.25–400 Hz and
(iii) 8–12 500 Hz. The background spectra were subtracted from the data. Data of the same
order of magnitude as the background signal were not used in the analysis. The fluctuation-
dissipation theorem [17] relates the noise power spectrum to the zero-field limit of the out-of-
phase AC susceptibility as

P(T , ω) = 4kBT
χ ′′(T , ω)

ω
. (3)

A comparison between the out-of-phase component obtained from AC susceptibility
measurements and results obtained from zero-field noise measurements verifies that
equation (3) is obeyed and hence that the AC data are obtained in the linear response regime.

3. Results and discussion

3.1. General behaviour

Figure 1 shows the AC susceptibility measured in the commercial set-up for the three samples.
The most dilute sample with a 0.06 vol% fraction of particles is intended to serve as an
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Figure 2. Magnetization versus field measured for the 5 vol% sample at T = 110, 121, 141
and 162 K (top to bottom). The curves are the fits described in the text. The inset shows the
magnetization normalized to saturation versus H/T .

experimental reference for a non-interacting system. However, the peak height of χ ′′ for this
sample increases slightly with increasing frequency. This trend is opposite to the expected
behaviour for non-interacting nanoparticles [18] and thus indicates that the dynamics of this
sample is influenced by weak inter-particle interactions. Despite this, it is possible to assess the
distribution of energy barriers with reasonable accuracy making use of the method described
in [19]. This analysis yields the pre-exponential factor τ0 = 1 × 10−12 s and anisotropy
constant K = 0.9 × 105 J m−3 in the Arrhenius–Néel expression

τ = τ0 exp

(
KV

kBT

)
. (4)

The extracted values of K and τ0 compare reasonably well with previous estimates. For
5.0 nm Fe–C particles, K has been estimated to 1.3 × 105 J m−3, and it has been found
that K increases with decreasing particle size to 3 × 105 J m−3 for 3.2 nm particles [20, 21].
Studies of batches with different preparation routes have reported values of τ0 in the range
2 × 10−12–3 × 10−11 s [4, 14, 21, 22].

To estimate the saturation magnetization, Ms(T ), of the particles we use m versus H curves
measured on the 5 vol% sample at T = 110, 121, 141 and 162 K (see figure 2). Although these
temperatures are well above the superparamagnetic blocking temperature of the particles, the
magnetization curves are not expected to follow the well-known Langevin function for non-
interacting isotropic superparamagnets, unless the anisotropy energy and dipolar interaction
energy are negligible compared to the thermal energy, i.e., σ = KV/(kBT ) � 1 and
ξD = µ0M

2
s V φ/(4πkBT ) � 1, where Ms denotes the saturation magnetization. For the

measurements performed here, σ ∼ 3–5 and the anisotropy has therefore to be included in the
analysis. We initially assume that the dipolar energy is negligible and analyse the magnetization
curves in terms of the results of [23] for non-interacting anisotropic particle systems using the
approximations for the low- and high-anisotropy limits given in section III.C.3 of that paper.
The solid curves in figure 2 correspond to these fits, and the gaps in the lines are the transition
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Figure 3. AC susceptibilities for the 5 vol% sample using the frequencies (left to right, open
symbols) f = 0.010, 0.031, 0.091, 0.31, 0.91, 3.1, 9.1, 31, 91, 310, 910, 3100, 9100 Hz. The
filled points are obtained from ZFC relaxation measurements and correspond to the frequencies
f = 0.019, 0.103, 0.979, 10.1 mHz. The dashed curve indicates the equilibrium susceptibility.

regions between the two approximations. Using the anisotropy constant and particle volume
determined above, the saturation magnetization was derived from these fits. The temperature
dependence of Ms was well described by the relation Ms(T ) = Ms(0)(1 − aT b) with
a = 2×10−6[K−b] and b = 1.9 (compare with [22]) and we find Ms(0) = 9.6×105 A m−1. It
is now possible to estimate that ξD ∼ 0.2 for the temperature range used here, which validates
the neglect of the dipolar term in our analysis. The importance of including the anisotropy
in the analyses of the magnetization curves is further illustrated in the inset of figure 2 in the
plot of M(H, T )/Ms(T ) versus H/T where deviations from the data collapse expected for a
Langevin function are clearly seen near µ0H/T = 0.002 T/K for the lowest temperatures.

Figures 3 and 4 show the AC susceptibility data measured in the non-commercial SQUID
for the 5 and 17 vol% samples, respectively. For the 5 vol% sample, ZFC relaxation data
are also included. A few differences in the behaviour of these samples as compared to the
dilute sample can immediately be noticed. The peak height of χ ′′ increases significantly with
increasing frequency, and the width of the peak increases with increasing frequency. The
onset of a non-zero χ ′′, is shifted towards higher temperatures and it becomes sharper with
increasing volume fraction of particles.

Figure 5 shows the relaxation rate for the 5 vol% sample measured for two different
wait times at different temperatures. Below 40 K, a clear wait time dependence is
observed, indicating that non-equilibrium phenomena play a key role for the dynamics at
low temperatures. The same sample has recently been subject to a detailed study of the low-
temperature non-equilibrium dynamics in which the memory effect in the AC susceptibility was
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Figure 4. AC susceptibilities for the 17 vol% sample using the frequencies (left to right) f = 0.017,
0.051, 0.17, 0.51, 1.7, 5.1, 17, 51, 170 Hz. The dashed curve indicates the equilibrium susceptibility.
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Figure 5. Relaxation rate for the 5 vol% sample obtained from ZFC relaxation measurements at
the temperatures indicated after wait times of 300 s (open symbols) and 3000 s (filled symbols).
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observed and further characterized by temperature-cycling ZFC relaxation experiments [10].
It was shown that the non-equilibrium dynamics in this sample is governed by long-range
collective behaviour and that well-known concepts for spin glasses such as memory and
rejuvenation are necessary to describe the observations. This implies that the magnetic
relaxation of the two concentrated samples must be analysed in terms of collective dynamics. A
model for weakly interacting particles, such as that proposed in [24], where the effect of dipolar
interaction on the relaxation time is accounted for by introducing the thermodynamic averages
of the local dipolar field in a rigorous expression for the single-particle relaxation time, is
only valid at temperatures much higher than the freezing temperatures of the two concentrated
samples. Below, we briefly introduce the concepts of dynamic scaling and discuss the observed
dynamics for the two concentrated samples in terms of critical dynamics.

3.2. Dynamic scaling

A signature of a continuous magnetic phase transition is the divergence of the correlation
length, ξ , when the phase transition temperature, Tg , is approached from above as ξ/a = ε−ν ,
where a is the average distance between interacting moments, ε = T/Tg − 1 is the reduced
temperature and ν is a critical exponent. According to conventional critical slowing down, the
longest relaxation time due to correlated dynamics, τc, is related to the correlation length as
τc ∝ (ξ/a)z, where z is the dynamic critical exponent. Hence, for T → T +

g

τc = τ∗ε−zν, (5)

where τ∗ is a microscopic relaxation time. According to the dynamic scaling hypothesis [25],
for T → T +

g and t/τ∗ � 1, the spin auto-correlation function can be written in the scaling
form [26]

q(t) = t−β/zνQ(t/τc), (6)

where β is a critical exponent and Q(x) is a scaling function. Using linear response theory
it is possible from this relation to obtain the complex susceptibility and derive the scaling
relation [27]

χ ′′(T , ω)

χeq(T )
= εβG(ωτc), (7)

where ω = 1/t and G(x) is a scaling function. The asymptotic behaviour is G(x) ∝ xy , with
y = 1 and β/zν for small and large values of x, respectively. Using the asymptotic behaviour
of G(x) in the limit ωτc → 0, the following relation holds: [26–28]

1

ω

χ ′′(T , ω)

χeq(T )
∝ ε−zν+β ∝ τ 1−β/zν

c , (8)

implying that the left-hand side of equation (8) at each temperature reaches a frequency-
independent plateau.

The meaning of τ∗ is that it is the relaxation time of the individual magnetic entities
in the system. For spin glasses, τ∗ ∼ 10−13 s and is the fluctuation time of an atomic
moment. For nanoparticles, τ∗ can be assigned to the superparamagnetic relaxation time
of a single particle of average size. In a dense system, the dipolar interaction may modify this
relaxation time compared to that of isolated particles. However, as a first approximation, it is
reasonable to assume that τ∗ is close to the superparamagnetic relaxation time of an isolated
particle, which in the relevant temperature range for our studies can be approximated by
Arrhenius–Néel expression (equation (4)). Below, we compare two approximations: (i) τ∗ =
constant, and (ii) τ∗ = τ0 exp(KVm/kBT ). The first approximation has been used in previous
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Figure 6. (a) Relaxation time τc = ω−1 versus reduced temperature for the 5 and 17 vol% samples.
Open and filled points are obtained from AC susceptibility and ZFC relaxation measurements,
respectively. The curves are fits to equation (5) as described in the text. (b) Relaxation time
versus temperature for the 0.06, 5 and 17 vol% samples. The freezing temperatures for the 5 and
17 vol% samples were obtained from χ ′ as described in the text. For the 0.06 vol% sample, the
data correspond to the peak temperatures of χ ′′, and the Arrhenius–Néel expression with parameter
values as given in the text is shown as a dashed curve.

work [4–6, 9, 29], but it is only a good approximation if there is little variation of the single-
particle relaxation time in the temperature interval used for the analysis.

In AC susceptibility experiments, the slowing down of the relaxation time τc (equation (5))
can be derived from the temperatures corresponding to the onset of dissipation (freezing
temperatures) as a function of the observation time ω−1. We have considered two criteria
for the onset. In the first criterion, the freezing temperature is defined as the temperature at
which χ ′′(T , ω) attains 15% of its maximum value. In the second criterion, the freezing
temperature is defined from the relation χ ′(Tf , ω) = 0.98χeq(Tf ). Figure 6(b) shows
the freezing temperatures for the two concentrated samples obtained from χ ′-data. The
superparamagnetic blocking temperatures estimated from the peaks of the χ ′′-data for the
dilute sample are included for comparison.

3.2.1. 17 vol% sample. First, we consider the approximation τ∗ = constant. Using the
out-of-phase susceptibility data, a dynamic scaling analysis according to equation (5) results
in Tg = 49.5 ± 2 K, zν = 10.5 ± 2 and τ∗ = 10−7.7±1 s [29]. This analysis is performed
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for reduced temperatures in the range 0.16 � ε � 0.37 and corresponds to four decades
of observation times. A similar analysis using the in-phase susceptibility data results in
Tg = 50.5 ± 2 K, zν = 9.5 ± 2 and τ∗ = 10−8.3±1 s. The values of Tg and zν from
the two analyses are in good agreement, and the value of τ∗ is, considering the temperature
interval used in the analysis and the estimates of τ0 and K given above, within the limits
implied by the Arrhenius–Néel expression. The derived values of zν also compare well to
values found in previous work on nanoparticles: zν = 11 ± 3 in [4] and 10.5 ± 3 in [9], but
less well to zν = 7.0 ± 0.3 found in [5]. A good agreement is also found comparing with
canonical three-dimensional Ising and Heisenberg spin glasses, for which zν = 8–10 [27,28].
An analysis according to the full scaling relation, equation (7), using Tg = 49.5 ± 1.5 and
zν = 10.5 ± 2.0, yields data collapse for β = 1.1 ± 0.2 (see [29], figure 3). This analysis is
based on all available χ ′′-data with temperatures corresponding to ε > 0.01 (T > 50 K). The
value of β is in good agreement with β = 1.2 ± 0.1 obtained from a full scaling analysis of
the non-linear magnetic susceptibility on a similar sample [6], but larger than typical values
of β = 0.5–0.8 reported for three-dimensional Ising and Heisenberg spin glasses [27, 30, 31].
The value of β/zν ≈ 0.11, extracted from the asymptotic behaviour of G(x) for large x, is
consistent with the derived values of β and zν.

Next, we consider the effect of using τ∗ = τ0 exp(KVm/kBT ). It should be noted that
this introduces one extra parameter that can be varied in the analysis, and we have therefore
explored the critical behaviour for a variety of choices of τ0 and KVm to evaluate the robustness
of the estimates of zν and β. Critical slowing down analyses have been performed for various
fixed values of τ0 and Tg and the values of zν and KVm have been estimated and used in the
analysis according to the scaling relation, equation (7), to extract the value of β. From these
analyses, it is found that both the critical slowing down relation and the full scaling relation
can be fulfilled for Tg = 50 ± 2 K with τ0 = 1 × 10−11 s. The estimate of KVm/kB depends
slightly on whether the χ ′-data or the χ ′′-data are used in the critical slowing down analysis,
and the corresponding parameter intervals are KVm/kB = 500 ± 100 K using χ ′ (shown in
figure 5) and KVm/kB = 650 ± 100 K using χ ′′. For both analyses, the extracted critical
exponents attain the values zν = 8.5 ± 2 and β = 0.9 ± 0.2. Other values of τ0 of the
order of 10−11 s yield slightly different values of KVm/kB but the same values of the critical
exponents. The values of KVm/kB and τ0 are of the same size as the estimates for the dilute
sample, KVm/kB ≈ 510 K and τ0 ∼ 1 × 10−12 s. This is what would be expected if the
effect of the inter-particle interactions were accounted for solely by the critical divergence of
τ (equation (5)). The values of zν and β are slightly smaller than those obtained from the
analysis assuming a constant τ∗. The decrease of zν is due to the fact that the temperature
dependence of τc/τ∗ is weaker when τ∗ is allowed to vary with temperature. The reduced value
of zν and the extracted smaller value of β leads to β/zν ≈ 0.11, which is the same value as was
found from the analysis using a constant value of τ∗. The data collapse of ε−βχ ′′(T )/χeq(T )

versus ωτc to a single function G(x) according to equations (5) and (7) using τ0 = 10−11 s and
KVm/kB = 570 K (the average of the values obtained using χ ′ and χ ′′ in the critical slowing
down analyses) is shown in figure 7. The scaling is of the same quality as that assuming a
constant τ∗, and the asymptotic behaviours are the same (in agreement with the estimates of β

and zν).
Figure 8(b) shows χ ′′(ω)/ωχeq as a function of ω for different temperatures T > Tg in

a log–log plot for the 17 vol% sample. The prediction of plateaus at low frequencies from
equation (8) holds regardless of a temperature dependence of τ∗ and figure 8(b) shows that the
prediction is well confirmed for this sample. In the same figure, the behaviour calculated from
equation (7) is also included using the experimentally determined scaling function, G(x), and
extrapolating using its asymptotic behaviour.
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3.2.2. 5 vol% sample. For the 5 vol% sample, an apparent scaling according to equation (5)
with a constant value of τ∗ can be obtained for temperatures corresponding to 0.25 � ε � 0.8
(six decades of observation times) with Tg = 35.1 ± 2 K, zν = 10.8 ± 1 and τ∗ = 10−4.5±0.5 s
using χ ′′-data, and with Tg = 34.6 ± 2 K, zν = 10.8 ± 1 and τ∗ = 10−4.7±0.5 s using χ ′-data
and ZFC relaxation data (shown in figure 6). However, deviations from scaling are found at
lower temperatures (ε < 0.25). Moreover, it is not possible to obtain data collapse according
to the full scaling relation equation (7), with temperatures corresponding to 0.02 � ε � 0.8
(or to 0.25 � ε � 0.8), for any choice of Tg , zν and β. Based on the estimates of KVm and τ0

for the dilute sample and the temperature range used in the analysis above, it is expected that
τ∗ ∼ 10−9–10−7 s. However, the derived value (τ∗ ∼ 10−4.6) deviates by orders of magnitude
from this range. Furthermore, even with an Arrhenius–Néel temperature dependence of τ∗, it
is not possible to obtain unambiguous parameters from the critical slowing down analysis and
to fulfil scaling according to equation (7). A simple manifestation of critical dynamics, which
is independent of a temperature dependence of τ∗, is that χ ′′(ω)/ωχeq should settle on plateaus
for small values of ω. Referring to figure 7(a), it is seen that this prediction is not fulfilled
for the 5 vol% sample (except for T � 65 K), and this is a further indication of non-critical
dynamics in this sample.

Several factors may contribute to deviations from critical behaviour and a possible non-
divergence of the correlation length. First, there may be physical clustering of the particles (i.e.,
regions with a higher density of particles than average). The effect of clustering is twofold:
at comparably high temperatures, where short-range correlations are relevant, the stronger
inter-particle interaction in particle clusters will enhance the local correlation length and shift
the dynamics to longer timescales than expected from the volume fraction of particles and
a homogeneous particle dispersion. In addition, the small-scale heterogeneity will create a
dispersion of length scales for the collective dynamics that modifies and possibly limits the
growth of correlations at lower temperatures. Second, the polydispersivity of the particle
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Figure 8. (a) A plot of the AC data (open points) and ZFC relaxation data (filled points) according
to equation (8) for the 5 vol% sample. (b) A plot of the AC data according to equation (8) for
the 17 vol% sample. The dashed curves are obtained from G(x) with the expected asymptotic
behaviours. Error bars are only shown when they are larger than the symbol size.

system leads to a distribution of single-particle relaxation times with a width that increases
significantly with decreasing temperature (and is thus more important for the 5 vol% sample
than for the 17 vol% sample). At lower temperatures, the largest particles may therefore become
thermally blocked on timescales comparable to the longest timescale related to the collective
dynamics and act as random magnets instead of taking part in the collective dynamics. This
may completely mask or even obstruct long-range collective behaviour, as discussed in [11].
The non-critical behaviour of the present 5 vol% sample is most probably due both to the
formation of clusters of particles (see section below) and to the dispersion of single-particle
relaxation times.

3.3. Relaxation function

For a spin glass and T � Tg , S(T , t) is history dependent and has a non-trivial variation
with t . However, when quasi-equilibrium is probed, one can write S(T , t) ∝ t−y(T ), where
y(T ) attains a positive value close to zero [26]. For T > Tg , the time dependence of S(T , t) is
determined by the critical dynamics. As discussed previously, the critical dynamics results in
fluctuations spanning all timescales between τ∗ and τc, and this gives a very broad spectrum
of relaxation times. From equation (2) and using the asymptotic behaviours of G(x) in
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Figure 9. Relaxation rate versus observation time at different temperatures. For the 0.06 vol%
sample (�) the relaxation rate is calculated from the AC susceptibility data. For the 5 vol% sample
(◦), the relaxation rate is calculated from AC susceptibility data (open symbols), ZFC data (filled
symbols) and noise data (curves) and for the 17 vol% sample the relaxation rate is calculated from
AC susceptibility data (�) and from G(x) with the expected asymptotic behaviours (dashed curves).

equation (7), it is easily seen that S(T , t) ∝ t−y(T ) with y(T ) = β/zν ≈ 0.1 for τ∗ � t � τc

and y(T ) = 1 for t � τc [32]. At intermediate observation times, y(T ) monotonically
increases with t between the two extremes and a crossover (or ‘knee’) from an essentially flat
S(T , t) versus t curve to S(T , t) ∝ t−1 is expected at t ∼ τc.

Figure 9 shows the relaxation rate versus time for the three samples at different
temperatures in the range 20 K � T � 70 K. For the 0.06 and 17 vol% samples, χ ′′-data are
shown, and for the 5 vol% sample, results from ZFC relaxation, AC susceptibility and magnetic
noise measurements are included. For the 17 vol% sample, χ ′′-data for T > Tg obtained from
equation (7) using the experimentally estimated G(x) and the expected asymptotic behaviour
for small x are also shown. In the low-temperature region, T � 30 K, the magnitudes of the
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relaxation rates for the two interacting samples are much smaller than that for the 0.06 vol%
sample. This is a signature of collective dynamics [11, 33]. Moreover, the relaxation rate of
the 17 vol% sample is smaller than that of the 5 vol% sample. For temperatures T � 40 K
and in the time window investigated, the relaxation rate of the 0.06 vol% sample decays with
increasing observation time, while the relaxation rate of the 5 vol% sample at short timescales
exhibits a weak frequency dependence followed by a knee and a decrease towards zero at
longer timescales. This approach towards zero relaxation rate (y(T ) ≈ 0.5–0.6 between 45
and 55 K) is slower than that of an atomic spin glass (for which y(T ) = 1) and consistent
with the lack of plateaus in the χ ′′(ω)/ωχeq curves for the corresponding temperatures in
figure 8(a). The time dependence of the relaxation rate at timescales below this knee is also
uncharacteristic of a spin glass as it is non-monotonic in time and shows a broad maximum. For
the 17 vol% sample and in the temperature range 35 K � T � 50 K, the relaxation rate exhibits
a slow, monotonic decrease with increasing observation time. The relaxation rate follows a
S(T , t) ∝ t−y(T ) dependence, with y(T ) decreasing with decreasing temperature, mimicking
the expected behaviour of a spin-glass system [26]. It should be noted though that the particle
size distribution will cause a temperature-dependent and broad onset of the response on short
observation times, as can be envisaged by the relaxation rate curves at the lowest temperatures.
At temperatures above Tg , T > 50 K, a knee appears in the relaxation rate also for this sample
and the approach towards zero follows S(T , t) ∝ t−1. At temperatures T � 65 K, the cut-off
in the relaxation rate is equally sharp for both interacting samples, and the dynamics of the two
samples are rather similar. This indicates, for the 5 vol% sample, that the particle moments
participating in the dynamics on long timescales in this temperature range are more strongly
interacting than average, i.e. that these particles are part of agglomerates showing properties
similar to those of the 17 vol% sample.

4. Conclusions

Extensive studies of the magnetic dynamics of a nanoparticle system containing nearly
monodisperse ferromagnetic particles have been presented. We have shown that a strongly
interacting particle system (the 17 vol% sample) displays critical dynamics reminiscent of that
of a spin glass. Furthermore, the effect of an Arrhenius–Néel temperature dependence of τ∗
has been explored and it has been found that dynamic scaling for this sample prevails although
with slightly reduced values of the critical exponents zν and β. The values of τ0 and KVm

obtained in this analysis are comparable to those found for the 0.6 vol.% sample, which is as
expected as τ∗ is related to the superparamagnetic relaxation time of a single particle, and the
majority of the effect of the inter-particle interactions should be accounted for by the critical
divergence, (T /Tg − 1)−zν , in equation (5).

For weakly interacting particle systems, the dipolar interaction will only slightly modify
the relaxation compared to a non-interacting system, and the relaxation time can be obtained
by introducing thermodynamical averages of the dipolar field in an expression for the single-
particle relaxation time, as suggested in [24]. Such a theory will apply for the most dilute
sample studied here (the 0.06 vol% sample) near the blocking temperature.

For a wide range of particle concentrations (interaction strengths), neither a pure model
for weakly interacting systems nor a model only assuming critical dynamics will correctly
describe the magnetic relaxation of an interacting particle system. In the present work, this
has been illustrated by the 5 vol% sample, in which correlations and collective behaviour are
of importance, as evidenced by non-equilibrium dynamics similar to that exhibited by spin
glasses [10] and an apparent critical slowing down in a limited temperature range. Yet, the
deviation from critical slowing down at lower temperatures and the failure to satisfy other
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signatures of critical dynamics show that the slowing down of the magnetic dynamics in this
sample differs profoundly from that in spin glasses. The range of concentrations for which
such a complex behaviour occurs becomes wider with increasing width of the particle size
distribution, as can be evidenced by comparing to the system studied in [11]. For the sample
used in that study, the relative dipole interaction strength (=M2

s φ/K) is comparable to that of
the 17 vol% sample studied here, but that sample has a much wider energy barrier distribution
and does not exhibit critical dynamics although it showed collective behaviour.
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